arteche

Moving together

4.

> Answers for any application
5. > General characteristics
6. > Technical standards
7. > Range of products
9. > General purpose latching relays
10. > Trip and lockout relays I
11. > Trip and lockout relays II
12. > Latching relays with coil overvoltage protection
13. > Breaking capacity
18. > Pick-up voltage/release voltage-temperature charts
20. > Model selection
22. > Dimensions and panel mounting cut-off

ANSWERS FOR ANY APPLICATION

ARTECHE latching relays are relays with 2 stable positions for the output contacts. Depending on which coil is energized, the output contacts will change from one position to another. The design of Arteche relay allows to have no consumption in permanence.

ARTECHE latching relays range is designed to guarantee the best features and complete security even in the hardest working environment.

The design, durability and quality of the different alternatives that ARTECHE latching relays can offer (FF range and standard range), make them suitable for high responsibility controls in different areas, highlighting:

ELECTRICAL UTILITIES:

Power plants, electrical substations.
> Position monitoring of circuit breaker and sectionalizer
> Direct operation on MV / HV (circuit breaker, sectionalizer)
> Position memory:

- manual / automatic
- local / remote
> Galvanic isolation between the control system and the primary equipment
> Applications where high speed operation is a must
> Applications where high breaking capacity is required
> Tripping and lockout functions
> Low duty loads control, activate digital inputs. FF range

RAILWAY SECTOR:

Electrification, signalling, interlocking and rolling stock.

> Boarding doors locking

> Brake circuit command
> Lighting and air conditioned systems operation
> Traction system
> Low duty loads control, activate digital inputs. FF range

INDUSTRIAL SECTOR:

Continuous process industries (Petrochemical, concrete, iron industries), water treatment, ...

[^0]

The great power of the output contacts makes possible direct action on HV and MV switchgear, because their making/breaking capacities, continuous through-current and overvoltage capacity guarantee perfect insulation.

GENERAL CHARACTERISTICS

The main features of ARTECHE's latching auxiliary relays are the followings:
>Designed to allow continuous operation even in high temperature ambient, within the whole voltage range.
$>$ No consumption in permanence.
> Self-cleaning contacts.
>High level of electrical insulation between input and output circuits.
> Availability of extended voltage range (+25/-30\%) for high security applications.
> Capable to operate under low duty loads, activate digital inputs, and operate without any load. FF Range.
> High speed operation (up to 10 ms).
> Capable to withstand vibrations and seismic conditions (EN 61373; IEEE 344; IEEE 323; IEEE C37.98 Standards).
> Sturdy design.
> Front state indication on the nameplatte.
>High protection degree (IP40), with transparent cover, making them suitable for use in salty and tropical atmospheres.
> In compliance with the most demanding test standards: IEC, EN, IEEE and bearing the CE mark.
> Wide range of auxiliary voltage levels (Vdc and Vac).
> Simplicity of installation (plug-in relays in a wide range of sockets with different installation configurations).
> Capable to work under ambients with relative humidity around 100\%.

> No need of maintenance after installation.

Large variety of assemblies with frontal and rear connection sockets by screw or fast-on clip.

TECHNICAL STANDARDS

GENERAL STANDARDS

In addition to the specific applicable standards, ARTECHE latching relays are designed based on the fulfilment of the following standards:
> IEC 61810: Electromechanical all-or-nothing relays.
> IEC 60255: Electrical relays. Measuring relays and protection equipment.
IEC 61812: Specified time relays for industrial use.
> IEC 60947: Low-voltage switchgear and controlgear.
> IEC 61000: Electromagnetic compatibility.

RAILWAY APPLICABLE STANDARDS

> EN 60077 Series. Rolling stock equipment.

- Part 1: General conditions in service and general terms.
- Part 2: Electrotechnical components.
> EN 50155 (IEC 60571 equivalent). Railway applications - Rolling stock equipment.

E322124

UL Recognized Component Marks for USA and Canada: The combined UL signs for the USA and Canada are recognized by the authorities of both countries. All auxiliary relays identified with this mark meet the requirements of both countries.

RANGE OF PRODUCTS

General purpose latching relays

The bistable ARTECHE relays with 2 stable positions. These positions are held by a permanent magnet, which prevents intermediate positions, giving a huge security operation. The position change is made with 2 sets of coils with separate entrances in BF3 and BJ8 and with breaking-flame contacts for each set of coils.

Their pick-up time lower than 20 ms and the high breaking capacity of their contacts make them appropriate to be used as an interface between the protection system and the breaker. The main application for these relays is multiply the output contacts in those controls that need to memorize 2 stables positions:

- automatic / manual
- close / open

Auxiliary trip and lockout relays

ARTECHE offers specific relays intended to be used in tripping and lockout applications, where high quality requirement in operating time (with models that assure the trip ever in less than 10 ms) and breaking capacity are needed.

Front indication on the nameplate, that indicates if the relay has changed the contact position.

All the relays include a diode in parallel with the coil (see bistable relays with overvoltage protection characteristic).

There is also the possibility of a bistable trip and lockout relay with manual reset.

Latching relays with coil overvoltage

protection

ARTECHE's auxiliary relays, either Vdc or Vac, have the possibility of including an element in parallel with the coil (diode or varistance).

These elements aim to prevent the over voltage peak generated by the coil itself and it may affect other equipment installed on the same line.

arteche

TECHNICAL FEATURES PER MODEL

GENERAL PURPOSE LATCHING RELAYS

Model	BF-3	BF-4	BJ-8	Bl-16

Applications

[^1]${ }^{(2)}$ Ask for higher altitudes

TRIP AND LOCKOUT RELAYS (I)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Connections

Options \& \& Options are not available \& \& \&

\hline Weight (g) \& \multicolumn{2}{|c|}{300} \& 600 \& \multicolumn{2}{|l|}{1250}

\hline Dimensions (mm) \& \multicolumn{2}{|l|}{$45 \times 45 \times 96,5$ (F large Type)} \& $$
\begin{gathered}
90 \times 50 \times 100,5 \\
(\mathrm{~J} \text { large Type) }
\end{gathered}
$$ \& \multicolumn{2}{|l|}{$120 \times 110 \times 105$}

\hline \multicolumn{6}{|l|}{Coil characteristics}

\hline Standard voltages ${ }^{(1)}$ \& \multicolumn{5}{|c|}{24, 48, 72, 110, 125, $220 \mathrm{Vdc} / 63,5,110,127,230 \mathrm{Vac}(50-60 \mathrm{~Hz}$)}

\hline Voltage range \& \multicolumn{5}{|c|}{$+10 \%-20 \% U_{N}$}

\hline Pick-up voltage \& \multicolumn{5}{|c|}{See pick-up voltage / temperature curves for Latching relays}

\hline Average consumptions only in the change-over \& 17 W \& 17 W \& 30 W \& 90 W \&

\hline \multicolumn{6}{|l|}{Operating time}

\hline Pick-up time \& \multicolumn{5}{|c|}{<10 ms (Vdc) <20 ms (Vac)}

\hline \multicolumn{6}{|l|}{Contacts}

\hline Contact material \& \multicolumn{5}{|c|}{AgNi}

\hline Distance between contacts \& \multicolumn{5}{|c|}{1,8 mm}

\hline Permanent current \& \multicolumn{5}{|c|}{10 A}

\hline Instantaneous current \& \multicolumn{5}{|c|}{80 A during $200 \mathrm{~ms} / 200$ A during 10 ms}

\hline Max. making capacity \& \multicolumn{5}{|c|}{$40 \mathrm{~A} / 0,5 \mathrm{~s} / 110 \mathrm{Vdc}$}

\hline Breaking capacity \& \multicolumn{5}{|c|}{See breaking capacity curves (Contact configuration)}

\hline Max. breaking capacity \& \multicolumn{5}{|c|}{See value for 50.000 operations}

\hline $U_{\text {max }}$ opened contact \& \multicolumn{5}{|c|}{$250 \mathrm{Vdc} / 400 \mathrm{Vac}$}

\hline \multicolumn{6}{|l|}{Performance data}

\hline Mechanical endurance \& \multicolumn{2}{|r|}{10^{7} operations} \& \& \multicolumn{2}{|l|}{10^{6} operations}

\hline Operating temperature \& \multicolumn{5}{|c|}{$-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$}

\hline Storage temperature \& \multicolumn{5}{|c|}{$-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$}

\hline Max. operating humidity \& \multicolumn{5}{|c|}{93\% / +40 ${ }^{\circ} \mathrm{C}$}

\hline Operating altitude ${ }^{(2)}$ \& \multicolumn{5}{|c|}{<2000 m}

\hline
\end{tabular}

TRIP AND LOCKOUT RELAYS (II)

\begin{tabular}{|c|c|c|c|}
\hline Model \& BF-4RP \& BJ-8RP \& BI-16RP

\hline Applications \& Intended for tripping and loc \& applications where high quality needed, with m \& in operating time and breaking capacity are

\hline \multicolumn{4}{|l|}{Construction characteristics}

\hline Contacts no. \& 4 Changeover \& 8 Changeover \& 16 Changeover

\hline Connections

Options \& \& \&

\hline Weight (g) \& 300 \& 600 \& 1400

\hline Dimensions (mm) \& $$
\begin{aligned}
& 45 \times 45 \times 96,5 \\
& \text { (F large Type) }
\end{aligned}
$$ \& \[

$$
\begin{gathered}
90 \times 50 \times 100,5 \\
\text { (J large Type) }
\end{gathered}
$$
\] \& (A) $120 \times$ (B) $110 \times(\mathrm{C}) 105$

\hline \multicolumn{4}{|l|}{Coil characteristics}

\hline Standard voltages ${ }^{(1)}$ \& \multicolumn{2}{|r|}{24, 48, 72, 110, 125, 220 Vdc $63,5,110,127,230$ Vac ($50-60 \mathrm{~Hz}$)} \& 110, 125, 220 Vcc

\hline Voltage range \& \multicolumn{3}{|c|}{+10\%-20\% $U_{\text {N }}$}

\hline Pick-up voltage ($20{ }^{\circ} \mathrm{C}$) \& \multicolumn{3}{|c|}{See pick-up voltage / temperature curves for Latching relays}

\hline Average consumptions only in the change-over \& 17 W \& 30 W \& 90w

\hline \multicolumn{4}{|l|}{Operating time}

\hline Pick-up time \& <10 ms (Vdc) <13 ms (Vac) \& <10 ms (Vdc) <20 ms (Vac) \& $<10 \mathrm{~ms}$

\hline \multicolumn{4}{|l|}{Contacts}

\hline Contact material \& \multicolumn{3}{|c|}{AgNi}

\hline Distance between contacts \& \multicolumn{3}{|c|}{$1,8 \mathrm{~mm}$}

\hline Permanent current \& \multicolumn{3}{|c|}{10 A}

\hline Instantaneous current \& \multicolumn{3}{|c|}{80 A during $200 \mathrm{~ms} / 200 \mathrm{~A}$ during 10 ms}

\hline Max. making capacity \& \multicolumn{3}{|c|}{$40 \mathrm{~A} / 0,5 \mathrm{~s} / 110 \mathrm{Vdc}$}

\hline Breaking capacity \& \multicolumn{3}{|c|}{See breaking capacity curves (Contact configuration)}

\hline Max. breaking capacity \& \multicolumn{3}{|c|}{See value for 50.000 operations}

\hline $U_{\text {max }}$ opened contact \& \multicolumn{3}{|c|}{$250 \mathrm{Vdc} / 400 \mathrm{Vac}$}

\hline \multicolumn{4}{|l|}{Performance data}

\hline Mechanical endurance \& \multicolumn{2}{|c|}{10^{7} operations} \& 10^{6} operations

\hline Operating temperature \& \multicolumn{3}{|c|}{$-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$}

\hline Storage temperature \& \multicolumn{3}{|c|}{$-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$}

\hline Max. operating humidity \& \multicolumn{3}{|c|}{93\% / +40 ${ }^{\circ} \mathrm{C}$}

\hline Operating altitude ${ }^{(2)}$ \& \multicolumn{3}{|c|}{<2000 m}

\hline
\end{tabular}

LATCHING RELAYS WITH COIL OVERVOLTAGE PROTECTION

Model

\begin{tabular}{|c|c|c|c|c|c|}
\hline Applications \& \multicolumn{5}{|l|}{Intended to protect the contact of the equipment that feeds the coil in our relay.}

\hline \multicolumn{6}{|l|}{Construction characteristics}

\hline Contacts no. \& 3 Changeover \& 4 Changeover \& 8 Changeover \& \multicolumn{2}{|c|}{16 Changeover}

\hline Connections

Options \& \& Options are not avail \& \& \&

\hline Weight (g) \& \multicolumn{2}{|l|}{Options are not availab
300} \& 600 \& \multicolumn{2}{|c|}{1400}

\hline Dimensions (mm) \& \multicolumn{2}{|l|}{$45 \times 45 \times 96,5$ (F large Type)} \& $$
\begin{gathered}
90 \times 50 \times 100,5 \\
(\mathrm{~J} \text { large Type) }
\end{gathered}
$$ \& \multicolumn{2}{|c|}{$120 \times 110 \times 105$}

\hline \multicolumn{6}{|l|}{Coil characteristics}

\hline Standard voltages ${ }^{(1)}$ \& \multicolumn{3}{|c|}{$24,48,72,110,125,220 \mathrm{Vdc}^{(3)}$} \& \multicolumn{2}{|l|}{$$
\begin{gathered}
\text { 24, 48, 72, 110, 125, } 220 \\
\text { Vcc/Vca (50/60 Hz) }
\end{gathered}
$$}

\hline Voltage range \& \multicolumn{3}{|c|}{$+25 \%-30 \% U_{N}$} \& \multicolumn{2}{|c|}{+10\% -20\% Un}

\hline Pick-up voltage \& \multicolumn{5}{|c|}{See pick-up voltage / temperature curves for Latching relays}

\hline Average consumptions only in the change-over \& \multicolumn{2}{|r|}{6 W} \& 12 W \& \multicolumn{2}{|c|}{24 W}

\hline \multicolumn{6}{|l|}{Operating time}

\hline Pick-up time \& \multicolumn{5}{|c|}{$<20 \mathrm{~ms}$}

\hline \multicolumn{6}{|l|}{Contacts}

\hline Contact material \& \multicolumn{5}{|c|}{AgNi}

\hline Distance between contacts \& \multicolumn{5}{|c|}{1,8 mm}

\hline Permanent current \& \multicolumn{5}{|c|}{10 A}

\hline Instantaneous current \& \multicolumn{3}{|c|}{80 A during $200 \mathrm{~ms} / 200$ A during 10 ms} \& \multicolumn{2}{|l|}{80 A during $200 \mathrm{~ms} /$ 150 A during 10 ms}

\hline Max. making capacity \& \multicolumn{5}{|c|}{$40 \mathrm{~A} / 0,5 \mathrm{~s} / 110 \mathrm{Vdc}$}

\hline Breaking capacity \& \multicolumn{5}{|c|}{See breaking capacity curves (Contact configuration)}

\hline Max. breaking capacity \& \multicolumn{5}{|c|}{See value for 50.000 operations}

\hline $\mathrm{U}_{\text {max }}$ opened contact \& \multicolumn{5}{|c|}{$250 \mathrm{Vdc} / 400 \mathrm{Vac}$}

\hline \multicolumn{6}{|l|}{Performance data}

\hline Mechanical endurance \& \multicolumn{5}{|c|}{10^{7} operations}

\hline Operating temperature \& \multicolumn{5}{|c|}{$-40^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$}

\hline Storage temperature \& \multicolumn{5}{|c|}{$-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}$}

\hline Max. operating humidity \& \multicolumn{5}{|c|}{93\% / +40 ${ }^{\circ} \mathrm{C}$}

\hline Operating altitude ${ }^{(2)}$ \& \multicolumn{5}{|c|}{<2000 m}

\hline
\end{tabular}

[^2]${ }^{(3)}$ Vac voltages upon request

BREAKING CAPACITY

BREAKING CAPACITY

The breaking capacity is a critical parameter on the design and the applications of the relays. Its mechanical life could be considerably reduced, depending on the value of the load (especially with heavy duty loads), the number of operations and the environmental conditions in which the relay is operating.

In any configuration, ARTECHE's auxiliary relays have a high breaking capacity values. These limits are showed in the table below, in terms of power and current values. In all the cases, these relays guarantee a right performance during 50,000 operations.

Likewise, the values showed in the following charts have been obtained in standard conditions in the laboratory, and they could be different in real conditions. In any case, the possibility of connecting serial contacts or a bigger distance between contacts makes these values to be considerably increased.

24 Vdc voltage

Different loads configurations.

110 Vdc voltage

Different loads configurations.

Resistive load:

> $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$.

Highly inductive load:
> $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$.

-1 contact
-2 contacts

		0 ms		20 ms		40 ms	
Vdc	Contact configuration	$\mathrm{P}(\mathrm{W})$	$1(A)$	P(W)	I(A)	P(W)	I(A)
110	1 contact	170	1,55	140	1,27	90	0,82
	2 contacts	1,360	12,36	1,106	10,05	730	6,63

220 Vdc voltage
 Different loads configurations.

Resistive load:

> $\mathrm{L} / \mathrm{R}=0 \mathrm{~ms}$.

Highly inductive load:
> $\mathrm{L} / \mathrm{R}=40 \mathrm{~ms}$.

1 contact

- 2 contacts

HOW TO SELECT THE CURVE OF MY RELAY

These charts show the breaking capacity values, either for resistive and highly inductive loads, in three voltage values of reference (ask for other voltage values). The charts show two different curves:
> 1 contact: Breaking capacity of the relays with distance between contacts $=1.8 \mathrm{~mm}$.
) 2 contacts: Breaking capacity for relays with serial contacts, and distance between contacts $=1.8 \mathrm{~mm}$.

The distance between contacts is shown in the tables of technical data.

HOW THE BREAKING CAPACITY CAN BE INCREASED

ARTECHE's auxiliary relays are power relays, designed specially to have a high breaking capacity. Thus, there are applications where the loads are so high that it is necessary to even increase the breaking capacity, keeping the reliability of the contacts of the auxiliary relays.

Thus, ARTECHE relays have the following alternatives and recommendations:
> Possibility of external connection of equipment (serial contacts) getting an important increase of breaking capacity in these equipment is shown, guaranteeing the right performance during a high number of operations.

PICK-UP VOLTAGE/RELEASE VOLTAGE-TEMPERATURE CHARTS

Variability of operative voltage range against temperature for the latching auxiliary relays.
General purpose latching relays and relays with coil overvoltage protection.

GENERAL PURPOSE RELAYS

Operative range against ambient temperature.

TRIP AND LOCKOUT RELAYS AND TRIP AND LOCKOUT RELAY WITH PUSH TO RESET BUTTON

Operative range against ambient temperature.

MODELS SELECTION

Latching	Type	Range	Range FF*	Aux. Supply Vdc or Vac.
Model Selection $>$				
General purpose range				
3 contacts relay	BF-3			
4 contacts relay	BF-4			
8 contacts relay	BJ-8			
16 contacts relay	BI-16			
Options				
Diode in parallel with the coil (only Vdc)		BB		
Fast acting trip and lock out relay (electrical reset only)		R		
Fast acting trip and lock out relay (electrical and manual reset)**		RP		
Range FF				
Rolling stock applications or	No		-	
low duty loads***	Yes		FF	
Aux. Supply Vdc or Vac				
Indicate voltage level and if it is VDC or VAC (ex: 24 VDC)				

* Indicate just if FF range is required.
** Unavailable for 3 contacts.
*** For more information refer to railway application brochure.

DIMENSIONS OF THE

RELAYS

arteche

RETAINING CLIPS

RETAINING CLIPS	OP SOCKET	RELATED PLUGGED RELAY
EO	Universal (D and F sized sockets require 2 units ; J sized sockets require 4 units)	RD; RF; RJ;Universal (Bag of 20 units)
		VDF; VDJ Universal (Bag of 100 units)
E41	DN-DE IP, DN-DE 2C IP	RD OP
E50	DN-TR OP, DN-TR 2C OP	RD OP
E40	FN-DE IP, FN-DE 2C IP	RF OP
E43	FN-DE IP, FN-DE 2C IP	TDF OP; VDF OP
E42	FN-TR OP, FN-TR 2C OP	RF OP
E44	FN-TR OP, FN-TR 2C OP	TDF OP; VDF OP
E31	FN-DE IP, FN-DE 2C IP	BF
E21	FN-TR OP, FN-TR 2C OP	BF
E45	JN-DE IP, JN-DE 2CIP	RJ OP
E47	JN-DE IP, JN-DE 2C IP	TDJ OP; VDJ OP
E46	JN-TR OP, JN-TR 2C OP	RJ OP
E48	JN-TR OP, JN-TR 2C OP	TDJ OP; VDJ OP
E29	JN-DE IP, JN-DE 2C IP	BJ; UJ
E27	JN-TR OP, JN-TR 2C OP	BJ; UJ
	OTHER ACCESSORIES	

> EO retaining clips

>E** retaining clips

SOCKETS, DIMENSIONS AND CUT-OUT

Sockets		Options		Weight (g)	
Relay	Type	Screw	Faston		
BF	IP10 Front connection	FN-DE IP10	FN-DE2C IP10	110	
	IP20 Front connection	FN-DE IP2O	FN-DE2C IP2O	110	Accessories
	IP10 Rear connection	FN-TR OP	FN-TR2C OP	90	Retaining clips
	IP10 Flush mounting	F-EMP OP		300	
BJ	IP10 Front connection	JN-DE IP10	JN-DE2C IP10	225	Function signs on the extraction ring
	IP20 Front connection	JN-DE IP2O	JN-DE2C IP2O	225	
	IP10 Rear connection	JN-TR OP	JN-TR2C OP	180	
	IP10 Flush mounting	J-EMP OP		400	
BI	IP10 Front connection	I-DE		1000	
	IP10 Rear connection	I-TR	I-TR2C	500	
	IP10 Flush mounting	I-EMP		500	

(1) DIN rail according to EN50022

DIN46277/3

[^0]:) Critical process surveillance
 > Position monitoring circuit breaker and sectionalizer
 > Galvanic isolation between the control and the power systems
 > Low duty loads control, activate digital inputs. FF range
) Activation of security sistems in industrial processes: - bloking electrical machines

[^1]: (2) Other voltage upon request

[^2]: ${ }^{(1)}$ Other voltage upon request
 ${ }^{(2)}$ Ask for higher altitudes

